

Biochemical Pharmacology 65 (2003) 435-440

Biochemical Pharmacology

www.elsevier.com/locate/biochempharm

Affinity of cyamemazine, an anxiolytic antipsychotic drug, for human recombinant dopamine vs. serotonin receptor subtypes

Ahcène Hameg^a, Franck Bayle^b, Philippe Nuss^c, Philippe Dupuis^d, Ricardo P. Garay^{e,*}, Michel Dib^a

^aAventis Pharma, 75012 Paris, France
^bINSERM EMI-E0117, Université Paris V, 75014 Paris, France
^cHôpital Sant-Antoine, 75571 Paris Cédex 12, France
^dCEREP, 86600 Celle l'Evescault, 94010 Créteil Cédex, France
^cINSERM U400, Faculté de Médecine, 8, rue du Général Sarrail, France

Received 12 June 2002; accepted 18 October 2002

Abstract

Animal studies indicate that the anxiolytic properties of the antipsychotic agent cyamemazine may result from blockade of serotonin 5-HT $_{2C}$ receptors and to a lesser extent from blockade of serotonin 5-HT $_{3}$ receptors. Here, we used human recombinant receptors to determine the relative affinity of cyamemazine for serotonin and dopamine receptor subtypes. In addition, cyamemazine was tested in other brain receptor types and subtypes which are considered to mediate central nervous systems effects of drugs. Hence, cyamemazine affinity was determined in human recombinant receptors expressed in CHO cells (hD_2 , hD_3 , and $hD_{4.4}$ receptors, h5-HT $_{1A}$, h5-HT $_{2A}$, h5-HT $_{2C}$, and h5-HT $_{7}$, and hM_1 , hM_2 , hM_3 , hM_4 , and hM_5 receptors), L-cells (hD_1 receptor), and HEK-293 cells (h5-HT $_3$ receptors) or natively present in N1E-115 cells (5-HT $_3$ receptors) or in rat cerebral cortex (non-specific α_1 - and α_2 -adrenoceptors, GABA $_A$ and GABA $_B$ receptors, H_3 histamine receptors), and guinea-pig cerebellum (H_1 central and H_2 histamine receptors) membranes. Similarly to atypical antipsychotics, cyamemazine exhibited high affinity for: (i) h5-HT $_{2A}$ receptors ($K_i = 1.5 \pm 0.7$ nM, mean \pm SEM, N = 3) and this was four times higher than for hD_2 receptors ($K_i = 5.8 \pm 0.8$ nM), (ii) h5-HT $_{2C}$ receptors ($K_i = 11.8 \pm 2.2$ nM), and (iii) 5-HT $_7$ receptors ($K_i = 22$ nM). Conversely, cyamemazine exhibited very low affinity for h5-HT $_3$ receptors ($K_i = 2.9 \pm 0.4$ μ M). In conclusion, similarly to atypical antipsychotic agents, cyamemazine, possesses high affinity for h5-HT $_3$, h5-HT $_2$ C, and h5-HT $_7$ receptors, a feature which can explain its low propensity to cause extrapyramidal adverse reactions in clinical practice. The high affinity for h5-HT $_3$ receptors, can account for the anxiolytic activity of cyamemazine in human subjects.

Keywords: Cyamemazine; Affinity; Radioligand binding; Recombinant human receptors; Guinea-pig cerebellum; Rat cerebral receptors

1. Introduction

Cyamemazine is a phenothiazine derivative, initially introduced in clinical practice as an antipsychotic agent because of its dopamine D₂ receptor antagonistic activity. However, ample clinical experience indicates that this drug is also useful for the successful treatment of anxiety [1,2] and is efficient in schizophrenic or depressed patients with suicidal tendency. Animal studies showed that: (i) cyamemazine potently antagonizes the effects produced by 5-HT₃ and 5-HT_{2C} serotonin receptor stimulation [3], (ii) cyame-

* Corresponding author. Tel.: +33-1-49-81-94-25; fax: +33-1-49-81-94-26.

E-mail address: garayperso@aol.com (R.P. Garay). *Abbreviations:* nH, Hill coefficient; K_i , binding constant.

mazine is anxiolytic on the elevated plus-maze and light/dark paradigm in mice [4], and (iii) blockade of serotonin 5-HT_{2C} receptors and to a lesser extent 5-HT₃ receptors can mediate the anxiolytic activity of cyamemazine [4].

The primary aim of this study was to compare the affinity of cyamemazine for human recombinant serotonin and dopamine receptor subtypes. In addition, cyamemazine was tested in other receptor types and subtypes which are considered as potential sites of action of therapeutic agents against anxiety, psychosis, and/or depression.

2. Materials and methods

Table 1 lists the 22 receptors which are object of this study. In addition, it contains the biological material used

Table 1
List of receptors studied, biological preparations used to study these receptors, reference compounds applied to validate the binding procedure, and bibliographic references describing details of the binding procedures

Receptor	Origin	Reference compound	Incubation	Bibliography [6]	
hD_1	h-recombinant (L-cells)	SCH 23390	60 min/22°		
hD_2	h-recombinant (CHO cells)	(+)-Butaclamol	60 min/22°	[7]	
hD_3	h-recombinant (CHO cells)	(+)-Butaclamol	$60 \text{ min/}22^{\circ}$	[8]	
$hD_{4.4}$	h-recombinant (CHO cells)	Clozapine	60 min/22°	[9]	
h5-HT _{1A}	h-recombinant (CHO cells)	8-OH-DPAT	60 min/22°	[10]	
h5-HT _{2A}	h-recombinant (CHO cells)	Ketanserin	15 min/37°	[11]	
h5-HT _{2C}	h-recombinant (CHO cells)	Mesulergine	30 min/37°	[11]	
5-HT ₃	N1E-115 cells	MDL 72222	180 min/4°	[12]	
h5-HT ₃	h-recombinant (HEK-293 cells)	MDL 72222	60 min/22°	[13]	
h5-HT ₇	h-recombinant (CHO cells)	Serotonin	120 min/22°	[14]	
GABA _A	Rat cerebral cortex	Muscimol	$10~\text{min/4}^\circ$	[15]	
GABA _B	Rat cerebral cortex	Baclofen	10 min/22°	[16]	
H ₁ (central)	Guinea-pig cerebellum	Pyrilamine	10 min/22°	[17]	
H_2	Guinea-pig striatum	Cimetidine	150 min/22°	[18]	
H ₃	Rat cerebral cortex	(R) - α -Me-histamine	60 min/22°	[19]	
hM_1	h-recombinant (CHO cells)	Pirenzepine	60 min/22°	[20]	
hM_2	h-recombinant (CHO cells)	Methoctramine	60 min/22°	[20]	
h M $_3$	h-recombinant (CHO cells)	4-DAMP	60 min/22°	[20]	
hM_4	h-recombinant (CHO cells)	4-DAMP	60 min/22°	[20]	
h M $_5$	<i>h</i> -recombinant (CHO cells)	4-DAMP	60 min/22°	[20]	
α_1 (non-selective)	Rat cerebral cortex	Prazosin	60 min/22°	[21]	
α_2 (non-selective)	Rat cerebral cortex	Yohimbine	30 min/22°	[22]	

for carrying out the binding procedures, the reference compounds used to validate the high affinity binding for each of these receptors, the incubation temperature and time used to determine cyamemazine displacing effects and finally literature references where methodological details for each binding procedure can be found.

At the end of each incubation period (Table 1), membrane or cell suspensions were rapidly filtered under vacuum conditions through glass fiber filters (GF/B, Packard or Filtermat A or B, Wallac). These filters were then washed several times with an ice-cold buffer solution using a cell harvester (Packard or Tomtec).

Bound radioactivity was measured with a scintillation counter (Topcount, Packard or Betaplate, Wallac) using a liquid scintillation cocktail (Microscint 0, Packard) or a solid scintillant product (MeltiLex B/HS, Wallac).

Each competition concentration–response curve was determined in duplicate by using eight concentrations of cyamemazine spanning from 0.03 nM to 30–100 μ M. These conditions were also used for generating concentration–response curves to reference compounds in order to validate this experimental procedure. Typical displacement curves are represented in Figs. 1 and 2. Experiments with dopamine and serotonin receptor subtypes were repeated twice (N = 3).

2.1. Analysis and expression of results

The specific radioligand binding to the receptors studied is defined as the difference between total binding and the non-specific binding determined in the presence of an excess of unlabeled ligand. Results are expressed as a percent of control specific binding obtained in the presence of cyamemazine. Mean data (±SEM) are presented in Section 3.

IC₅₀ values (concentration causing 50% inhibition of control specific binding) and Hill coefficients (*n*H; slope of the curve) were determined by an iterative non-linear regression analysis fitting the competition concentration–response curves with a standard sigmoid curve equation.

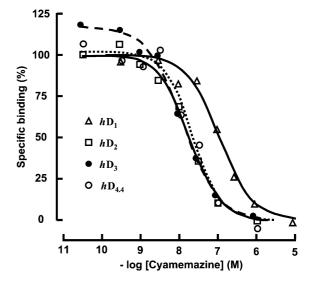


Fig. 1. Effects of cyamemazine on specific binding to human hD_1 , hD_2 , hD_3 , and $hD_{4,4}$ recombinant receptors. The figure represents one typical single experiment of each displacement curve for [3 H]SCH 23390 labeling hD_1 receptors, (+)-[3 H]butaclamol labeling for hD_2 and hD_3 and [3 H]clozapine labeling $hD_{4,4}$ receptors. For mean values (N = 3) see Table 2 and text.

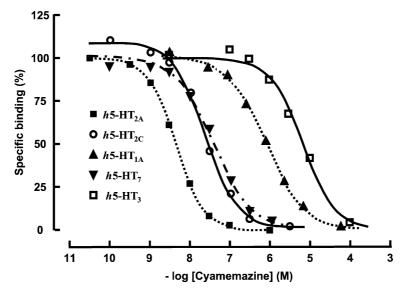


Fig. 2. Effects of cyamemazine on specific binding to various serotoninergic receptors. The figure represents one typical single experiment of each displacement curve for [3 H]8-OH-DPTA (labeling h5-HT_{1A} receptors), [3 H]ketanserin (labeling h5-HT_{2A} receptors), [3 H]mesulergine (labeling h5-HT_{2C}), [3 H]MDL 72222 (labeling h5-HT₃ receptors), and [3 H]serotonin (labeling h5-HT₇ receptors). For mean values (N = 3) see Table 2 and text.

The inhibition constants (K_i) for the binding competition experiments were derived by fitting the experimental data (non-linear least-squares regression analysis) with Cheng Prusoff equation $[K_i = IC_{50}/(1 + L/K_d)]$, where L is the concentration of radiolabeled ligand used for the assay and K_d the affinity of the labeled ligand for the receptor [5].

2.2. Drugs

Cyamemazine tartrate was provided by Aventis Pharma. All reference compounds and radioactive ligands (Tables 1 and 2) used in this investigation were purchased from usual commercial sources.

Table 2 Ic_{50} and K_i values for cyamemazine and reference compounds at 22 membrane receptors

Receptor	Cyamemazine			Reference compound			
	IC ₅₀ (nM)	K_i (nM)	nН		IC ₅₀ (nM)	K_i (nM)	nН
hD_1	12	3.8	1.0	SCH 23390	0.80	0.29	1.2
hD_2	16	5.8	1.0	(+)-Butaclamol	8.4	3.0	1.1
hD_3	11	2.5	1.1	(+)-Butaclamol	13	2.8	1.3
$hD_{4,4}$	30	5.3	1.2	Clozapine	133	56	1.0
h5-HT _{1A}	1030	517	0.8	8-OH-DPAT	0.80	0.40	0.8
h5-HT _{2A}	3.5	1.5	1.4	Ketanserin	2.0	0.90	1.2
$h5$ -HT $_{2C}$	36	12	1.1	Mesulergine	2.5	0.81	1.2
5-HT ₃	201	75	1.0	MDL 72222	22	8.4	1.0
h5-HT ₃	5723	2943	1.1	MDL 72222	10	5.3	1.0
h5-HT ₇	39	22	0.9	Serotonin	0.88	0.49	0.9
GABA _A	N.C.	>30 μM	_	Muscimol	29	20	1.1
$GABA_B$	N.C.	>30 µM	_	Baclofen	118	64	0.9
H ₁ (central)	22	9.3	1.1	Pyrilamine	1.2	0.51	1.0
H_2	424	351	0.9	Cimetidine	1390	1150	0.6
H_3	37600	21700	1.3	(R) - α -Me-histamine	1.5	0.89	0.9
hM_1	16	13	1.1	Pirenzepine	15	12	1.0
hM_2	61	42	1.2	Methoctramine	17	12	1.4
hM_3	44	32	1.0	4-DAMP	2.6	1.8	1.6
hM_4	27	12	0.9	4-DAMP	1.5	0.65	1.2
h M $_5$	59	35	1.1	4-DAMP	1.9	1.1	1.3
α_1 (non-selective)	8.5	2.3	1.3	Prazosin	0.85	0.23	1.2
α_2 (non-selective)	3060	1320	0.9	Yohimbine	59	26	1.0

Hill coefficients (nH) are also reported. N.C. (non-calculated value) indicates absence of significant displacement at the maximal tested concentration of cyamemazine (100 µM).

3. Results

3.1. Human recombinant dopamine receptor subtypes

The affinity of cyamemazine for four subtypes of human recombinant dopamine receptors expressed in CHO cells was in the nanomolar range (Table 2 and Fig. 1). The highest affinity was for the hD_3 receptors ($K_i = 2.5 \pm 0.5$ nM, N = 3), closely followed by the affinity for hD_1 receptor ($K_i = 3.8 \pm 0.6$ nM), hD_2 ($K_i = 5.8 \pm 0.8$ nM), and $hD_{4.4}$ ($K_i = 5.3 \pm 0.5$ nM) receptors (Table 2 and Fig. 1).

3.2. Human recombinant serotoninergic receptor subtypes

Determination of cyamemazine affinity for five subtypes of human serotoninergic receptors revealed that the compound had very high affinity for $h5\text{-HT}_{2A}$ receptors (Table 2, $K_i = 1.5 \pm 0.7$ nM). The affinity for the $h5\text{-HT}_{2A}$ receptor subtype (1.5 nM) was 4-fold higher than that for hD_2 receptors (5.8 nM). Of the remaining subtypes of human serotoninergic receptors, Fig. 2 and Table 2 show that the compound had affinity in the nanomolar range for $h5\text{-HT}_{2C}$ ($K_i = 11.8 \pm 2.2$ nM) and $h5\text{-HT}_7$ ($K_i = 22$ nM) receptors but only in the micromolar range for $h5\text{-HT}_{1A}$ ($K_i = 0.517$ µM) and $h5\text{-HT}_3$ ($K_i = 2.9 \pm 0.4$ µM) receptors all expressed CHO cells, except for the $h5\text{-HT}_3$ which was expressed in HEK-293 cells.

Interestingly, cyamemazine was 40-fold more potent in displacing the high affinity radioligand [3 H]BRL 43694 from 5-HT $_3$ receptors natively present in N1E-115 cells ($K_i = 75 \pm 9$ nM) than from the recombinant h5-HT $_3$ expressed in HEK-293 cells (Table 2).

3.3. Other receptors

3.3.1. Human recombinant muscarinic receptor subtypes Cyamemazine exhibited a nanomolar affinity for the five subtypes of human muscarinic receptors hM_1 ($K_i = 13 \text{ nM}$), hM_2 ($K_i = 42 \text{ nM}$), hM_3 ($K_i = 32 \text{ nM}$), hM_4 ($K_i = 12 \text{ nM}$), and hM_5 ($K_i = 35 \text{ nM}$) expressed in CHO cells (Table 2).

3.3.2. Non-selective rat cerebral cortex α_1 - and α_2 -adrenoceptors

Cyamemazine exhibited a very low affinity, in the micromolar range ($K_i = 1.3 \, \mu\text{M}$) for the non-selective α_2 -adrenoceptor determined by using radiolabeled yohimbine in rat cerebral cortex membrane preparations (Table 2). However, cyamemazine had a high potency ($K_i = 2.3 \, \text{nM}$) in antagonizing radiolabeled prazosin binding to α_1 -adrenoceptors present in rat cerebral cortex (Table 2).

3.3.3. Native animal brain GABA and histamine receptor subtypes

Cyamemazine up to the concentration of 30 μ M lacked measurable affinity for the GABA_A and GABA_B receptors

in rat cerebral membrane preparations. However, under the same experimental conditions, the reference agents, muscimol (an agonist of GABA_A receptors) and baclofen (an antagonist of GABA_B receptors), displaced the high affinity binding of specific ligand with nanomolar potency (Table 2).

Cyamemazine was a potent antagonist ($K_i = 9.3 \text{ nM}$) of radiolabeled pyrilamine specific binding to central H_1 receptors natively occurring in the guinea-pig cerebellum. However, cyamemazine exhibited a substantially (20-fold) lower affinity toward the H_2 histamine receptors in the guinea-pig striatum ($K_i = 351 \text{ nM}$) and an extremely low affinity for H_3 histamine receptors ($K_i = 22 \text{ \mu M}$) determined by using (R)- α -Me-histamine which displaced the high affinity radiolabeled ligand from its binding sites in membranes prepared from the rat cerebral cortex (Table 2).

4. Discussion

The major findings of this paper are that, in addition to dopamine receptors, $h5\text{-HT}_{2\text{C}}$ and $h5\text{-HT}_{2\text{A}}$ receptors can also be involved in the therapeutical action of cyamemazine in psychotic patients. First, $h5\text{-HT}_{2\text{C}}$ receptors, for which cyamemazine displayed an affinity ($K_i = 12 \text{ nM}$) even higher than that previously found in rat brain membranes ($K_i = 27 \text{ nM}$, [3]). Such a high affinity for $5\text{-HT}_{2\text{C}}$ receptors can explain, at least in part, its anxiolytic activity in humans (see later). Second, of all human recombinant receptor subtypes studied here, the highest affinity of cyamemazine was for the $h5\text{-HT}_{2\text{A}}$ subtype ($K_i = 1.5 \text{ nM}$) and the affinity for this receptor was 4-fold higher than that for hD_2 receptors ($K_i = 5.8 \text{ nM}$).

It may be objected that the affinity of a compound for a receptor demonstrated in a classical radioligand binding assay does not indicate whether it results from an agonist or an antagonist action. However, functional studies in animals indicate that cyamemazine behaves as an antagonist of 5-HT_{2C} receptors [3]. Hence, it is reasonable to advance the hypothesis that the affinity of cyamemazine for h5-HT_{2C} receptors is due to an antagonist activity and this effect can contribute to anxiolytic property of cyamemazine clearly observed in patients treated with this drug. Indeed, ritanserin possesses this receptor profile and is considered an effective anxiolytic agent in humans ([25]; see, however, [26]). Furthermore, recent pharmacological studies have further substantiated an anxiolytic potential for 5-HT_{2C} receptor antagonists ([27–29]; see, however, [30]).

Cyamemazine exhibited low affinity for h5-HT₃ receptors ($K_i = 3 \mu M$), a finding contrasting with previous findings in rodent preparations, where cyamemazine bound at 5-HT₃ receptors [31] and antagonized 5-HT-induced contractions in guinea-pig ileum with a K_i value of 30 nM [3]. The later high affinity value for 5-HT₃ receptors was confirmed here in murine neuroblastoma N1E-115 cells

 $(K_i = 75 \text{ nM})$ which express this receptor subtype. Therefore, 5-HT₃ receptor can perhaps play a role in the anxiolytic activity of cyamemazine in mice [4]. However, it seems unlikely that this receptor is involved in cyamemazine-induced anxiolysis in humans [1,2]. An alternative explanation is that different 5-HT₃ receptor subtypes exist in the different preparations studied (for recent review of pharmacological heterogeneity and evidence of 5-HT₃ receptor subtypes see [32]).

The present results allow to exclude two additional potential receptor mechanisms for the anxiolytic activity of cyamemazine. These are GABA_A and α_2 -adrenergic receptors for which cyamemazine exhibited a very low affinity (>30 μ M and 1320 nM, respectively). Finally, the h5-HT_{1A} affinity is weak (517 nM), but it can also contribute to the anxiolytic activity of cyamemazine. Whether serotonin reuptake, or the chloride channel coupled to GABA_A receptors or other possible mechanisms mediate partly the anxiolytic properties of cyamemazine remains an issue for further investigation.

An unanticipated finding was the very high affinity of cyamemazine for $h5\text{-HT}_{2A}$ receptors ($K_i = 1.5 \text{ nM}$). As pointed out earlier, cyamemazine shares this property with the group of the so-called atypical antipsychotics [23,24] and this may explain its known low propensity to produce extrapyramidal adverse reactions in patients. Conversely, 5-HT_{2A} antagonism is unlikely to contribute to the anxiolytic activity of cyamemazine, since clozapine which shares the same property lacks anxiolytic effects in both isolated and group-housed male mice in the elevated plusmaze test [33]. Concerning $h5\text{-HT}_{2A}$ receptors, it is important to mention that high affinity for cyamemazine was recently confirmed by Positron Emission Tomography (Yann Hode, personal communication).

Roth *et al.* have found that atypical neuroleptics bind with high affinity to cloned 5-HT_{2C} receptors (7–30 nM, see [34]) and to rat 5-HT₇ receptors (pimozide had the highest affinity = 0.5 nM, see [35]). Cyamemazine also showed high affinity for h5-HT_{2C} receptors (12 nM) and to h5-HT₇ receptors (22 nM).

Cyamemazine exhibited high affinity for dopamine D_2 receptors (6 nM) consistent with its antipsychotic action in schizophrenia. Similarly to clozapine, cyamemazine also exhibited high affinity for dopamine D_1 receptors (4 nM). There are a number of clinical and laboratory observations, consistent with the notion that the interaction of clozapine with D_1 receptors is involved in its beneficial role in schizophrenia, particularly concerning sedation [36–38]. Whether the interaction with dopamine D_1 receptors is involved in the therapeutical action of cyamemazine deserves further investigation.

Two other findings deserve a brief comment. First, cyamemazine affinity for H_1 histamine receptors can explain the sedative effects associated with the use of high doses of cyamemazine. Second, cyamemazine affinity for M_3 acetylcholine receptors may mediate the mouth dry-

ness, experienced also by patients receiving high doses of this drug.

In conclusion, similarly to clozapine and other atypical antipsychotic agents, cyamemazine possesses high affinity for $h5\text{-HT}_{2A}$, $h5\text{-HT}_{2C}$, and $h5\text{-HT}_{7}$ receptors, a property which can explain its low propensity to produce extrapyramidal adverse reactions. Moreover, the high affinity of cyamemazine for $h5\text{-HT}_{2C}$ receptors is likely to contribute to its anxiolytic action in humans.

References

- Dubroca JM. L'anxiolyse: intérêt de la cyamémazine. Exp Opin Invest Drugs 1995;4:333–42.
- [2] Radat F. Cyamémazine: traitement symptomatique des dimensions anxieuses, impulsives et agressives. L'Information Psychiatrique 1995;10:967–8.
- [3] Alvarez-Guerra M, d'Alché-Birée F, Wolf WA, Vargas F, Dib M, Garay RP. 5-HT₃- and 5-HT_{2C}-antagonist properties of cyamemazine: significance for its clinical anxiolytic activity. Psychopharmacology 2000;147:412–7.
- [4] Bourin M, Dhonnchadha BAN, Colombel MC, Dib M, Hascoët M. Cyamemazine as an anxiolytic drug on the elevated plus maze and light/dark paradigm in mice. Behav Brain Res 2001;124:87–95.
- [5] Cheng Y, Prusoff WH. Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50% inhibition (1₅₀) of an enzymic reaction. Biochem Pharmacol 1973;22:3099–108.
- [6] Zhou Q-Y, Grandy DK, Thamb L, Kushner JA, Van Tol HHM, Cone R, Pribnow D, Salon J, Bunzow J, Civelli O. Cloning and expression of human and rat D₁ dopamine receptors. Nature 1990;347:76–80.
- [7] Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-Howie KJ, Bunzow JR, Server AC, Civelli O. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA 1989;86:9762–6.
- [8] Mackenzie RG, Vanleeuven D, Pugsley TA, Shih Y-H, Demattos S, Tang L, Todd R, O'Malley KL. Characterization of the human dopamine D₃ receptor expressed in transfected cell lines. Eur J Pharmacol 1994:266:79–85.
- [9] Van Tol HHM, Wu CM, Guan H-G, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V. Multiple dopamine D4 receptor variants in the human population. Nature 1992;358:149–52.
- [10] Mulheron JG, Casanas SJ, Arthur JM, Garnovskaya MN, Gettys TW, Raymond JR. Human 5-HT_{1A} receptor expressed in insect cells activates endogenous G₀-like G protein. J Biol Chem 1994;269:12954–62.
- [11] Bonhaus DW, Bach C, De Souza A, Salazar FHR, Matsuoka BD, Zuppan P, Chan HW, Eglen RM. The pharmacology and distribution of human 5-hydroxytryptamine_{2B} (5-HT_{2B}) receptor gene products: comparison with 5-HT_{2A} and 5-HT_{2C} receptors. Br J Pharmacol 1995;115:622-8.
- [12] Hoyer D, Neijt HC. Identification of serotonin 5-HT₃ recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 1988;33:303–9.
- [13] Hope AG, Peters JA, Brown AM, Lambert JJ, Blackburn TP. Characterization of a human 5-hydroxytryptamine₃ receptor type A (h5-HT₃R-A_s) subunit stably expressed in HEK 293 cells. Br J Pharmacol 1996;118:1237–45.
- [14] Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR. Molecular cloning and expression of a 5-hydroxytryptamine₇ serotonin receptor subtype. J Biol Chem 1993;68:18200–4.
- [15] Snodgrass SR. Use of [³H]muscimol for GABA receptor studies. Nature 1978;273:392–4.
- [16] Bowery NG, Hill DR, Hudson AL. Characteristics of GABA_B receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 1983;78:191–206.

- [17] Dini S, Caselli GF, Ferrari MP, Giani R, Clavenna G. Heterogeneity of [³H]-mepyramine binding sites in guinea pig cerebellum and lung. Agents Actions 1991;33:181–4.
- [18] Ruat M, Traiffort E, Bouthenet ML, Schwartz JC, Hirschfeld J, Buschauer A, Schunack W. Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H₂ receptor using [¹²⁵I]-iodinated probes. Proc Natl Acad Sci USA 1990;87: 1658–62.
- [19] Arrang JM, Roy J, Morgat JL, Schunack W, Schwartz JC. Histamine H₃ receptor binding sites in rat brain membranes: modulations by guanine nucleotides and divalent cations. Eur J Pharmacol 1990;188:219–27.
- [20] Dorje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 1991;256:727–33.
- [21] Greengrass P, Bremner R. Binding characteristics of [³H]-prazosin to rat brain α-adrenergic receptors. Eur J Pharmacol 1979;55:323–6.
- [22] Uhlen S, Wikberg JE. Rat spinal chord α₂-adrenoceptors are of the α_{2A}-subtype: comparison with α_{2A}- and α_{2B}-adrenoceptors in rat spleen, cerebral cortex and kidney using ³H-RX821002 ligand binding. Pharmacol Toxicol 1991;69:341–50.
- [23] Meltzer HY. Action of atypical antipsychotics. Am J Psychiatry 2002;159:153–5.
- [24] Meltzer HY. The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999;21(Suppl):106S–15S.
- [25] Ceulemans D, Hoppenbrouwers M, Gelders Y, Reyntjens AJM. The influence of ritanserin, a serotonin antagonist, in anxiety disorders: a double-blind placebo-controlled study vs. lorazepam. Pharmacopsychiatry 1985;18:303–5.
- [26] Deakin JF, Guimaraes FS, Wang M, Hensman R. Experimental tests of the 5HT receptor imbalance theory of affective disturbance. In: Sandler M, Coppen A, Harnett S, editors. 5-Hydroxytryptamine in psychiatry. Oxford: University Press; 1991. p. 143–54.
- [27] Griebel G, Perrault G, Sanger DJ. A comparative study of the effects of selective and non-selective 5-HT₂ receptor subtype antagonists in rat and mouse models of anxiety. Neuropharmacology 1997;36:793–802.
- [28] Bromidge SM, Dabbs S, Davies DT, Davies S, Duckworth DM, Forbes IT, Gaster LM, Ham P, Jones GE, King FD, Mulholland KR, Saunders DV, Wyman PA, Blaney FE, Clarke SE, Blackburn TP, Holland V, Kennett GA, Lightowler S, Middlemiss DN, Trail B, Riley GJ, Wood

- MD. Biarylcarbamoylindolines are novel and selective 5-HT(2C) receptor inverse agonists: identification of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a potential antidepressant/anxiolytic agent. J Med Chem 2000;43:1123–34.
- [29] Martin JR, Ballard TM, Higgins GA. Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav 2002;71:615–25.
- [30] Kennett G, Lightowler S, Trail B, Bright F, Bromidge S. Effects of RO 60 0175, a 5-HT(2C) receptor agonist, in three animal models of anxiety. Eur J Pharmacol 2000;387:197–204.
- [31] Garay RP, d'Alché-Birée F. Cyamémazine (Tercian[®]): profil neuroleptique ou anxiolytique? L'Information Psychiatrique 1995;10: 969–70
- [32] Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002;71:533–54.
- [33] Manzaneque JM, Brain PF, Navarro JF. Effect of low doses of clozapine on behaviour of isolated and group-housed male mice in the elevated plus-maze test. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:349–55.
- [34] Roth BL, Ciaranello RD, Meltzer HY. Binding of typical and atypical antipsychotic agents to transiently expresses 5-HT_{1C} receptors. J Pharmacol Exp Ther 1992;260:1361–5.
- [35] Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ, Shen Y, Meltzer HY, Sibley DR. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 1994;268:1403–10.
- [36] Deveney AM, Waddington JL. Comparison of the new atypical antipsychotics olanzapine and ICI 204,636 with clozapine on behavioural responses to the selective "D1-like" dopamine receptor agonist A 68930 and selective "D2-like" agonist RU 24213. Psychopharmacology (Berl) 1996;124:40–9.
- [37] Jackson DM, Wikstrom H, Liao Y. Is clozapine an (partial) agonist at both dopamine D1 and D2 receptors? Psychopharmacology (Berl) 1998;138:213–6.
- [38] Salmi P, Ahlenius S. Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior. Neuroreport 2000;11: 1269–72.